Was turnout associated with the composition of Labour, Tory, and Reform votes?

Was turnout associated with the composition of Labour, Tory, and Reform votes? An excuse to test drive the {compos} package, by David Firth and Fiona Sammut, which implements the generalized Wedderburn logit model. See preprint by Firth and Sammut (2023), Analysis of composition on the original scale of measurement.

Knitted output over here.

Hedges’ g for multilevel models in R {lmeInfo}

This package looks useful (for {nlme} not {lme4}).

“Provides analytic derivatives and information matrices for fitted linear mixed effects (lme) models and generalized least squares (gls) models estimated using lme() (from package ‘nlme’) and gls() (from package ‘nlme’), respectively. The package includes functions for estimating the sampling variance-covariance of variance component parameters using the inverse Fisher information. The variance components include the parameters of the random effects structure (for lme models), the variance structure, and the correlation structure. The expected and average forms of the Fisher information matrix are used in the calculations, and models estimated by full maximum likelihood or restricted maximum likelihood are supported. The package also includes a function for estimating standardized mean difference effect sizes (Pustejovsky, Hedges, and Shadish (2014) <doi:10.3102/1076998614547577>) based on fitted lme or gls models.”

How Many Imputations Do You Need? {howManyImputations}

“When performing multiple imputations, while 5-10 imputations are sufficient for obtaining point estimates, a larger number of imputations are needed for proper standard error estimates. This package allows you to calculate how many imputations are needed, following the work of von Hippel (2020).”

Useful example here.

References

Von Hippel, P. T. (2020). How many imputations do you need? A two-stage calculation using a quadratic rule. Sociological Methods & Research, 49(3), 699-718.

Why does everyone love a good RCT?

The individual treatment effect is defined as an individual’s potential outcome under treatment minus their potential outcome under control. This within-participant difference cannot be directly measured since only one of the two potential outcomes is realised depending on whether the participant was exposed to treatment or control.

Everyone loves a good randomised controlled trial because the mean outcome of people who were exposed to treatment minus the mean outcome of people who were exposed to control – a between-participant difference – is an unbiased estimator of the mean of within-participant individual treatment effects.

I’ve coded up a simulation in R over here to illustrate how they work. Note in particular the importance of confidence intervals!

Actual causes: two examples using the updated Halpern-Pearl definition

Halpern (2015) provides three variants of the Halpern-Pearl definitions of actual causation. I’m trying to get my head around the formalism, which is elegant, concise, and precise, but tedious to use in practice, so I wrote an R script to do the sums. This blog post is not self-contained – you will need to read the original paper for an introduction to the model. However, it works through two examples, which may help if you’re also struggling with the paper.

The second (“updated”) definition of an actual cause asserts that \(\vec{A} = \vec{a}\) is a cause of \(\varphi\) in \((M,\vec{u})\) iff the following conditions hold:

AC1 \((M,\vec{u}) \models (\vec{A} =\vec{a}) \land \varphi\).

This says, if \(\vec{A} = \vec{a}\) is an actual cause of \(\varphi\) then they both hold in the actual world, \((M,\vec{u})\). Note, for this condition, we are just having a look at the model and not doing anything to it.

AC2 There is a partition of the endogenous variables in \(M\) into \(\vec{Z} \supseteq \vec{X}\) and \(\vec{W}\) and there are settings \(\vec{x’}\) and \(\vec{w}\) such that

(a) \((M,\vec{u}) \models [ \vec{X} \leftarrow \vec{x’}, \vec{W} \leftarrow \vec{w}] \neg \varphi\).

So, we’re trying to show that undoing the cause, i.e., setting \(\vec{X}\) to \(\vec{x’} \ne \vec{x}\), prevents the effect. We are allowed to modify \(\vec{W}\) however we want to show this, whilst leaving \(\vec{Z}-\vec{X}\) free to do whatever the model tells these variables to do.

(b) If \((M,\vec{u}) \models \vec{Z} = \vec{z^{\star}}\), for some \(\vec{z^{\star}}\), then for all \(\vec{W’} \subseteq \vec{W}\) and \(\vec{Z’} \subseteq \vec{Z}-\vec{X}\),
\((M,\vec{u}) \models [ \vec{X} \leftarrow \vec{x}, \vec{W’} \leftarrow \vec{w’}, \vec{Z’} \leftarrow \vec{z^{\star}}] \varphi\).

This says, trigger the cause (unlike AC1, we aren’t just looking to see if it holds) and check whether it leads to the effect under all subsets of \(\vec{Z}\) (as per actual world) that aren’t \(\vec{X}\) and all subsets of the modified \(\vec{W}\) that we found for AC2(a). Note how we are setting \(\vec{Z}\) for those subsets, rather than just observing it.

AC3 There is no \(\vec{A’} \subset \vec{A}\) such that \(\vec{A’} = \vec{a’}\) satisfies AC1 and AC2.

This says, there’s no superfluous stuff in \(\vec{A}\). You taking a painkiller and waving a magic wand doesn’t cause your headache to disappear, under AC3, if the painkiller works without the wand.

Example 1: an (actual) actual cause

Let’s give it a go with an overdetermined scenario (lightly edited from Halpern) that Alice and Bob both lob bricks at a glasshouse and smash the glass. Define

\(\mathit{AliceThrow} = 1\)
\(\mathit{BobThrow} = 1\)
\(\mathit{GlassBreaks} = \mathit{max}(\mathit{AliceThrow},\mathit{BobThrow})\)

So, if either Alice or Bob (or both) hit the glasshouse, then the glass breaks. Strictly speaking, I should have setup one or more exogenous variables, \(\vec{u}\), that define the context and then defined \(\mathit{AliceThrow}\) and \(\mathit{BobThrow}\) in terms of \(\vec{u}\), but it works fine to skip that step as I have here since I’m holding \(\vec{u}\) constant anyway.

Is \(\mathit{AliceThrow} = 1\) an actual cause of \(\mathit{GlassBreaks} = 1\)?

AC1 holds since \((M,\vec{u}) \models \mathit{AliceThrow} = 1 \land \mathit{GlassBreaks} = 1\). The first conjunct comes directly from one of the model equations and none of the functions change it. Spelling out the second conjunct,

\(\mathit{GlassBreaks} = \mathit{max}(\mathit{AliceThrow},\mathit{BobThrow})\)
\(= \mathit{max}(1, 1)\)
\(= 1\)

For AC2, we need to find a partition of the endogenous variables such that AC2(a) and AC2(b) hold. Try \(\vec{Z} = \{ \mathit{AliceThrow}, \mathit{GlassBreaks} \}\) and \(\vec{W}= \{ \mathit{BobThrow} \}\).

AC2(a) holds since \((M,\vec{u}) \models [ \mathit{AliceThrow} \leftarrow 0, \mathit{BobThrow} \leftarrow 0] \mathit{GlassBreaks} = 0\).

For AC2(b), we begin with \(\vec{Z} = \{ \mathit{AliceThrow}, \mathit{GlassBreaks} \}\) and the settings as per the unchanged model, so

\((M,\vec{u}) \models \mathit{AliceThrow} = 1 \land \mathit{GlassBreaks} = 1\).

We need to check that for all \(\vec{W’} \subseteq \vec{W}\) and \(\vec{Z’} \subseteq \vec{Z}-\vec{X}\),
\((M,\vec{u}) \models [ \vec{X} \leftarrow \vec{x}, \vec{W’} \leftarrow \vec{w’}, \vec{Z’} \leftarrow \vec{z^{\star}}] \varphi\).

Here are the combinations and \(\varphi \equiv \mathit{GlassBreaks} = 1\) holds for all of them:

\((M,\vec{u}) \models [ \mathit{AliceThrow} \leftarrow 1, \mathit{GlassBreaks} \leftarrow 1, \mathit{BobThrow} \leftarrow 0 ] \varphi\)
\((M,\vec{u}) \models [ \mathit{AliceThrow} \leftarrow 1, \mathit{BobThrow} \leftarrow 0 ] \varphi\)
\((M,\vec{u}) \models [ \mathit{AliceThrow} \leftarrow 1, \mathit{GlassBreaks} \leftarrow 1 ] \varphi\)
\((M,\vec{u}) \models [ \mathit{AliceThrow} \leftarrow 1 ] \varphi \)

(The third was rather trivially true; however, as far as I understand, has to be checked given the definition.)

AC3 is easy since the cause only has one variable, so there’s nothing superfluous.

Example 2: not an actual cause

Now let’s try an example that isn’t an actual cause: the glass breaking causes Alice to throw the brick. It’s obviously false; however, it wasn’t clear to me exactly where it would fail until I worked through this…

AC1 holds since in the actual world, \(\mathit{GlassBreaks} = 1\) and \(\mathit{AliceThrow} = 1\) hold.

Examining the function defintions, they don’t provide a way to link \(\mathit{AliceThrow}\) to a change in \(\mathit{GlassBreaks}\), so the only apparent way to do so is through \(\vec{W}\). Therefore, use the partition \(\vec{W} = \{\mathit{AliceThrow}\}\) and \(\vec{Z} = \{\mathit{GlassBreaks}, \mathit{BobThrow}\}\).

Now for AC2(a), we can easily get \(\mathit{AliceThrow} = 0\) as required, since we can do what we like with \(\vec{W}\). It doesn’t help when we move onto AC2(b) since we have to hold \(\mathit{AliceThrow} = 0\), which is the negation of what we want. The same is the case for the other partition including \(\mathit{AliceThrow}\) in \(\vec{W}\), i.e., \(\vec{W} = \{ \mathit{AliceThrow}, \mathit{BobThrow} \}\).

So, the broken glass does not cause Alice to throw a brick. The setup we needed to get through AC2(a) set us up to fail AC2(b).

References

Halpern, J. Y. (2015). A Modification of the Halpern-Pearl Definition of Causality. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), 3022ā€“3033.

See also this companion blog post.

Neat guide to {tidyverse} updates in R, by Mine Ƈetinkaya-Rundel

This guide is intended for people teaching tidyverse, but it’s relevant to anyone (e.g., me!) trying to keep up with developments.

Everytime I load {tidyverse}, it advises me to use {conflicted}. I didn’t realise it would be this useful:

library(conflicted)
    
penguins |>
  filter(species == "Adelie")
#> Error:
#> ! [conflicted] filter found in 2 packages.
#> Either pick the one you want with `::`:
#> ā€¢ dplyr::filter
#> ā€¢ stats::filter
#> Or declare a preference with `conflicts_prefer()`:
#> ā€¢ `conflicts_prefer(dplyr::filter)`
#> ā€¢ `conflicts_prefer(stats::filter)`

Another neat update: case_when now doesn’t need type-specific NAs like NA_character_ for default cases.

# now, optionally
df |>
  mutate(
    x = case_when(
       ~ "value 1",
       ~ "value 2",
       ~ "value 3",
      .default = NA
    )
  )

Lots of other tips.